Naphthalene Removal From Water by Novel Mesoporous Carbon Nitride Adsorbent

نویسنده

  • S. E. Moradi
چکیده

Polycyclic aromatics hydrocarbons are chemical species with two to six fused benzene rings and are well-known toxic hazardous pollutants and highly potent carcinogens that can cause tumors in some organisms.1 In recent years, naphthalene contamination in water systems has drawn increasing attention. Naphthalene originates from natural and anthropogenic sources. Anthropogenic sources include engine exhaust, industrial processes, crude oil, urban run-off, domestic heating systems, incinerators and smoke. Natural sources include terrestrial coal deposits, volcanic eruptions and forest fires. The main sources of naphthalene in surface water are atmospheric deposition, runoff from contaminated soils and deposition from sewage discharges.2 Most naphthalenes are hydrophobic with high boiling and melting points and electrochemical stability. Therefore, they can exist and be accumulated in soils or water for a long time.3 Adsorption treatment provides a simple and universal approach to effectively removing organic pollutants from the aquatic environment. The removal of toxic organic pollutants from water is a problem, particularly when they are present in low concentrations. Several studies have focused on the fate and transport of these pollutants and the application of remedial technologies to manage them.4–10 Activated carbons present an outstanding adsorption capacity that stems from their high surface area, pore structure and surface chemical properties. These materials are effective adsorbents for priority pollutants, therefore being suitable for the decontamination of water and wastewater. These porous carbons are generally microporous and the preparation of carbon materials with well-ordered mesoporous structure would offer many application possibilities not only in the adsorption and in separation of large molecules whose molecular sizes are too large to enter micropores but also in electrical double layer capacitors, gas separation, catalysis, water and air purification and energy storage. Recently, Ryoo et al. prepared ordered mesoporous carbons from mesoporous silica templates such as MCM-48, SBA-1 and SBA-15 using sucrose as the carbon source.11–14 Adsorption plays an important role in these processes. Therefore, the interactions of such compounds with the mesoporous carbon surface must be studied in detail. The mesoporous carbon materials adsorption capacity depends on quite different factors. Obviously, it depends on the mesoporous carbon’s characteristics: texture (surface area, pore size distributions), surface chemistry (surface functional groups).15–17 It also depends on adsorptive characteristics: molecular weight, polarity, pKa, moNaphthalene Removal From Water by Novel Mesoporous Carbon Nitride Adsorbent

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stepwise Synthesis of Mesoporous Carbon Nitride Functionalized by Melamine Based Dendrimer Amines for Adsorption of CO2 and CH4

In this study, a novel solid dendrimer amine (hyperbranched polymers) was prepared using mesoporous carbon nitride functionalized by melamine based dendrimer amines. This adsorbent was denoted MDA-MCN-1. The process was stepwise synthesis and hard-templating method using mesoporous silica SBA-15 as a template. Cyanuric chloride and N,N-diisopropylethylamine (DIPEA, Merck) were used for function...

متن کامل

Mesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution

Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...

متن کامل

Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media

The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area an...

متن کامل

Modified Nanoporous Carbon Material for Anionic Dye Removal from Aqueous Solution

In this study, the adsorption behavior of anionic dyes from aqueous solution onto mesoporous carbon material (CMK-1) and modified with polymer (PANI/CMK-1) has been investigated as a function of parameters such as adsorbent dose (0.08-0.8 g/L), solution pH 3–10, contact time and initial concentration (10-100 mg/L). The influence of these parameters on the adsorption capacity has been studied us...

متن کامل

Novel modified magnetic mesopouros silica for rapid and efficient removal of methylene blue dye from aqueous media

This reaserch aims at functionalizing magnetic mesoporous silica with methacrylic acid-3-aminopropyltriethoxysilane (Fe3O4@MCM-41@MAA-APTES) applied for removal of methylene blue from aqueous solution. Several variables (such as pH, dye concentration, adsorbent amount and contact time) have been investigated. Under optimum conditions, maximum capacity of 87.71 mg g-1 of MB was obtained for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013